Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Org Biomol Chem ; 1(2): 401-8, 2003 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-12929437

RESUMO

The reactions of SO4.- with 2'-deoxycytidine 1a and cytidine 1b lead to very different intermediates (base radicals with 1a, sugar radicals with 1b). The present study provides spectral and kinetic data for the various intermediates by pulse radiolysis as well as information on final product yields (free cytosine). Taking these and literature data into account allows us to substantiate but also modify in essential aspects the current mechanistic concept (H. Catterall, M. J. Davies and B. C. Gilbert, J. Chem. Soc., Perkin Trans. 2, 1992, 1379). SO4.- radicals have been generated radiolytically in the reaction of peroxodisulfate with the hydrated electron (and the H. atom). In the reaction of SO4.- with 1a (k = 1.6 x 10(9) dm3 mol-1 s-1), a transient (lambda max = 400 nm, shifted to 450 nm at pH 3) is observed. This absorption is due to two intermediates. The major component (lambda max approximately 385 nm) does not react with O2 and has been attributed to an N-centered radical 4a formed upon sulfate release and deprotonation at nitrogen. The minor component, rapidly wiped out by O2, must be due to C-centered OH-adduct radical(s) 6a and/or 7a suggested to be formed by a water-induced nucleophilic replacement. These radicals decay by second-order kinetics. Free cytosine is only formed in low yields (G = 0.14 x 10(-7) mol J-1 upon electron-beam irradiation). In contrast, 1b gives rise to an intermediate absorbing at lambda max = 530 nm (shifted to 600 nm in acid solution) which rapidly decays (k = 6 x 10(4) s-1). In the presence of O2, the decay is much faster (k approximately 1.3 x 10(9) dm3 mol-1 s-1) indicating that this species must be a C-centered radical. This has been attributed to the C(5)-yl radical 8 formed upon the reaction of the C(2')-OH group with the cytidine SO4(.-)-adduct radical 2b. This reaction competes very effectively with the corresponding reaction of water and the release of sulfate and a proton generating the N-centered radical. Upon the decay of 8, sugar radical 11 is formed with the release of cytosine. The latter is formed with a G value of 2.8 x 10(-7) mol J-1 (85% of primary SO4.-) at high dose rates (electron beam irradiation). At low dose rates (gamma-radiolysis) its yield is increased to 7 x 10(-7) mol J-1 due to a chain reaction involving peroxodisulfate and reducing free radicals. Phosphate buffer prevents the formation of the sugar radical at the SO4(.-)-adduct stage by enhancing the rate of sulfate release by deprotonation of 2b and also by speeding up the decay of the C(5)-yl radical into another (base) radical. Cytosine release in cytidine is mechanistically related to strand breakage in poly(C). Literature data on the effect of dioxygen on strand breakage yields in poly(C) induced by SO4.- (suppressed) and upon photoionisation (unaltered) lead us to conclude that in poly(C) and also in the present system free radical cations are not involved to a major extent. This conclusion modifies an essential aspect of the current mechanistic concept.


Assuntos
Citidina/química , Desoxicitidina/química , Sulfatos/química , Soluções Tampão , Cátions , Citidina/efeitos da radiação , Desoxicitidina/análogos & derivados , Desoxicitidina/efeitos da radiação , Radicais Livres/química , Cinética , Oxigênio/química , Fosfatos , Poli C/química , Poli C/efeitos da radiação , Poli U/química , Poli U/efeitos da radiação , Radiólise de Impulso , Pirimidinas/química
2.
Environ Sci Technol ; 37(2): 372-8, 2003 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-12564911

RESUMO

As a model for the electron-beam degradation of volatile aromatics (benzene, toluene, ethylbenzene, xylenes, BTEX) in groundwater strip gas, to be reported in Part 2, the gamma-radiolysis of benzene has been studied in aqueous solutions. Addition of *OH to the aromatic ring gives rise to hydroxycyclohexadienyl radicals which either dimerize or disproportionate. The various dimers undergo acid-catalyzed water elimination yielding biphenyl. Phenol is formed upon disproportionation directly, but also via dihydroxycyclohexadiene which subsequently undergoes acid-catalyzed water elimination. Co-radiolysis of benzene with nitrite generates *NO2 in addition to the hydroxycyclohexadienyl radical. These not only interact with one another (product: nitrobenzene via nitro-hydroxycyclohexadienes) but the *NO2 radical is also capable of abstracting cyclohexadienylic hydrogens. This reaction leads to the formation of 2- and 4-nitrophenol and to further nitrated products that were not identified. These are suggested to be formed in an analogous reaction of *NO2 with the hydroxycylohexadienyl dimers. The effect of O2 on these reactions and the relevance for the gas-phase radiolysis of BTEX is discussed.


Assuntos
Poluição Ambiental/prevenção & controle , Hidrocarbonetos Aromáticos/química , Modelos Químicos , Elétrons , Gases , Radical Hidroxila/química , Oxidantes/química , Poluentes do Solo , Volatilização
3.
Environ Sci Technol ; 37(2): 379-85, 2003 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-12564912

RESUMO

The electron-beam (EB) degradation of volatile aromatics (benzene, toluene, ethylbenzene, xylenes: BTEX) in groundwater strip gas, which in the present work has been modeled by the introduction of the desired aromatic(s) to a stream of air or another gas, such as oxygen, is initiated essentially by the addition of *OH radicals to the aromatic ring, giving rise to hydroxycyclohexadienyl radicals, which form the corresponding peroxyl radicals upon addition of oxygen. As studied in some detail with benzene as a BTEX representative, various reactions of these lead to numerous oxidation products in a cascade of reactions, including the decomposition of products under the prevailing conditions of high turnover of the initial aromatic. Importantly, hydroxycyclohexadienylperoxyl radical formation is partly reversible, and the reactions of the hydroxycyclohexadienyl radicals, which thus have a significant presence in these systems, must therefore also be taken into consideration. In the gas phase, in contrast to the aqueous phase (see Part 1), the reactions of the hydroxycyclohexadienyl radicals lead to oligomeric products that appear to contribute, in addition to ionic clusters, to nucleation for the aerosols observed. Various nitrated products, among them nitrophenols, are observed when air is used for the stripping. However, these studies did not clear the pilot plant stage, since BTEX degradation using a bioreactor carried out in parallel was so successful that the EB technology was judged to be noncompetitive. As for the latter, expensive equipment consisting of a stripper, the EB machine, and an aerosol precipitator would be required. The condensed aerosols are biorefractory and would require further treatment for detoxification.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos/química , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água/métodos , Aerossóis , Reatores Biológicos , Elétrons , Gases , Oxirredução , Poluentes do Solo/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...